Università degli Studi di Napoli "Federico II" - Facoltà di Ingegneria

Federico II

Dipartimento di Scienza e Ingegneria dello Spazio


RISOLUZIONE NUMERICA DI PROBLEMI CLASSICI DELLA FLUIDODINAMICA



 

a cura degli studenti

La stella pulsar della sera

De Luca Mauro

Leo Arsenio

Vitale Antonio

ormai partiti per un lungo viaggio laddove nessun uomo è mai giunto prima...

Star Trek
 
 

SOMMARIO DELLE ELABORAZIONI NUMERICHE
 

Lo stakanovista numerico
 

Diffusione 1D di una grandezza scalare

Convezione 1D di una grandezza scalare

Diffusione e convezione 1D di una grandezza scalare

Trasporto convettivo 2D di una grandezza scalare passiva

Modello psi-zita 2D

Risoluzione delle equazioni di Eulero nel caso monodimensionale utilizzando il pacchetto CLAWPACK




DIFFUSIONE 1D DI UNA GRANDEZZA SCALARE

Sono stati sviluppati diversi programmi per l'analisi della pura diffusione di una grandezza scalare su un anello monodimensionale, utilizzando diversi schemi numerici di risoluzione. Si suppone una condizione iniziale di tipo sinusoidale per la grandezza scalare sull'anello monodimensionale. Si esegue inoltre il confronto tra l'andamento della soluzione numerica e quello della, cosiddetta, soluzione analitica. I programmi sono sviluppati in ambiente FORTRAN, mentre la grafica dei risultati si esegue in MATLAB.

Metodo di Crank-Nicholson generalizzato
Main:cranknic.for

Subroutine:iter.for, newdiag.for, sol.for
Grafica:confronto soluzione analitica-numerica.m

Metodo di Du Fort-Frankel
Main:1) dufortfrankel.for, 2) dufortfrankeserpl.for
Grafica:confronto soluzione analitica-numerica.m, soluzione serpeggiante.m

Metodo esplicito
Main: esplicito.for
Grafica:confronto soluzione analitica-numerica.m

"Leap-frog"
Main: leapfrog.for
Grafica:confronto soluzione analitica-numerica.m


CONVEZIONE 1D DI UNA GRANDEZZA SCALARE

Sono stati sviluppati diversi programmi per l'analisi della pura convezione di una grandezza scalare su un anello monodimensionale, utilizzando diversi schemi numerici di risoluzione. Si suppone una condizione iniziale di tipo sinusoidale per la grandezza scalare sull'anello monodimensionale. Si esegue inoltre il confronto tra l'andamento della soluzione numerica e quello della, cosiddetta, soluzione analitica. I programmi sono sviluppati in ambiente FORTRAN, mentre la grafica dei risultati si esegue in MATLAB.

Metodo di Lax-Friedrichs
Main:lax-friedrichs.for
Grafica:confronto soluzione analitica-numerica.m

Metodo di Lax-Wendroff
Main:lax-wendroff.for
Grafica:confronto soluzione analitica-numerica.m

Metodo upwind-ftcs
Main: upwind-ftcs.for
Grafica:confronto soluzione analitica-numerica.m


DIFFUSIONE E CONVEZIONE 1D DI UNA GRANDEZZA SCALARE

E' quì presentata l'analisi della convezione-diffusione di una grandezza scalare su un anello monodimensionale, mediante alcuni schemi numerici di risoluzione. Si suppone una condizione iniziale di tipo sinusoidale per la grandezza scalare sull'anello monodimensionale. Si esegue inoltre il confronto tra l'andamento della soluzione numerica e quello della, cosiddetta, soluzione analitica. Il programma è sviluppato in ambiente FORTRAN, mentre la grafica dei risultati si esegue in MATLAB. Si esegue poi uno studio in MATLAB della regione di stabilità relativa al programma di diffusione e convezione suddetto. Abbiamo infine uno studio della regione di stabilità nel piano (Re, C).

Diffusione e convezione 1D
Main:diffusione-convezione.for
Grafica:confronto soluzione analitica-numerica.m

Regione di stabilità nel piano (Re, C)
regione.m


TRASPORTO CONVETTIVO 2D DI UNA GRANDEZZA SCALARE PASSIVA

Il programma esegue l'analisi del trasporto convettivo di una grandezza scalare passiva, cioè di una grandezza che non partecipa alla generazione del campo di moto, mettendosi nell'ipotesi di un dominio 2D quadrato, in cui è assegnato un campo di moto circolare uniforme. Il programma è sviluppato in ambiente FORTRAN, mentre la grafica dei risultati si esegue in MATLAB.

Trasporto convettivo di una grandezza scalare passiva
Main:traspcon.for
Subroutine:conv.for
Grafica:trasporto.m


MODELLO PSI-ZITA 2D

Il programma risolve le equazioni di Navier-Stokes incomprimibili bidimensionali mediante il modello psi-zita o modello funzione di corrente - vorticità . Si suppone che il dominio sia di forma quadrata e per le condizioni al contorno della vorticità si utilizza la formula di Tom del primo ordine. Per il termine convettivo dell'equazione del bilancio della zita si utilizza ancora una formulazione del primo ordine per il calcolo dei flussi convettivi. Il programma è sviluppato in ambiente FORTRAN, mentre la grafica dei risultati si esegue in MATLAB.

Modello psi-zita
Main:psi-zita.for
Subroutine:bilpsi.for, convzita.for, diffzita.for
Grafica:isolinee.m


RISOLUZIONE DELLE EQUAZIONI DI EULERO NEL CASO MONODOMENSIONALE UTILIZZANDO IL PACCHETTO CLAWPACK

RISOLUZIONE DELLE EQUAZIONI DI EULERO NEL CASO MONODOMENSIONALE UTILIZZANDO IL PACCHETTO CLAWPACK.doc





File FORTRAN del CLAWPACK utilizzati nel lavoro, da scaricare insieme a tutto il pacchetto al seguente URL.
Driver.for
Out1eu.for
Claw1.for
Ic.for
Copyq1.for
Bc1.for
Src1.for
Step1.for
Rp1eu.for
Limiter.for
Philim.for

File MATLAB sviluppati per l'analisi dei problemi esaminati nel lavoro
Prob1eg.m
Prob1rho.m
Prob2eg.m
Prob2rho.m
Prob3eg.m
Prob3rho.m